Preclinical effects of CRLX101, an investigational camptothecin-containing nanoparticle drug conjugate, on treating glioblastoma multiforme via apoptosis and antiangiogenesis

نویسندگان

  • Chien-Ju Lin
  • Yi-Ling Lin
  • Frank Luh
  • Yun Yen
  • Ruei-Ming Chen
چکیده

Malignant gliomas are difficult to treat in clinical practice. This study was aimed to investigate the preclinical efficacy of CRLX101, an investigational nanoparticle-drug conjugate developed by conjugating camptothecin (CPT) with cyclodextrin-polyethylene glycol, against gliomas. CPT fluorescence was detected across tight-junction barriers and in mouse plasma and brain. Following CRLX101 treatment, CPT was distributed in the cytoplasm of human U87 MG glioma cells. U87 MG cell viability was decreased by CRLX101 and CPT. Moreover, CRLX101 induced less cytotoxicity to human astrocytes compared to CPT. Exposure of U87 MG cells to CRLX101 induced G2/M cell cycle arrest and apoptosis. Administration of CRLX101 induced apoptosis in mice brain tumor tissues and prolonged the survival rate of mice. In addition, CRLX101 inhibited hypoxia and angiogenesis by suppressing the expression of carbonic anhydrase IX, vascular endothelial growth factor, and CD31 in tumor sections. Taken together, this preclinical study showed that CRLX101 possesses antitumor abilities by inducing cell cycle arrest and apoptosis in glioma cells and inhibiting tumor angiogenesis, thereby prolonging the lifespan of mice bearing intracranial gliomas. These data support further research of CRLX101 in patients with brain tumors.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Cancer Therapy: Preclinical Translational Impact of Nanoparticle–Drug Conjugate CRLX101 with or without Bevacizumab in Advanced Ovarian Cancer

Purpose: Increased tumor hypoxia and hence elevated hypoxia-inducible factor-1a (HIF1a) is thought to limit the efficacy of vascular endothelial growth factor (VEGF) pathway–targeting drugs by upregulating adaptive resistance genes. One strategy to counteract this is to combine antiangiogenic drugs with agents able to suppress HIF1a. One such possibility is the investigational drug CRLX101, a n...

متن کامل

Translational impact of nanoparticle-drug conjugate CRLX101 with or without bevacizumab in advanced ovarian cancer.

PURPOSE Increased tumor hypoxia and hence elevated hypoxia-inducible factor-1α (HIF1α) is thought to limit the efficacy of vascular endothelial growth factor (VEGF) pathway-targeting drugs by upregulating adaptive resistance genes. One strategy to counteract this is to combine antiangiogenic drugs with agents able to suppress HIF1α. One such possibility is the investigational drug CRLX101, a na...

متن کامل

Pharmacodynamic and pharmacogenomic study of the nanoparticle conjugate of camptothecin CRLX101 for the treatment of cancer.

CRLX101 is a nanopharmaceutical consisting of cyclodextrin-based polymer molecule and camptothecin. The CRLX101 nanoparticle is designed to concentrate and slowly release camptothecin in tumors over an extended period of time. Tumor biopsy and blood samples collected from patients with advanced solid malignancies before and after CRLX101 treatment are subjected to immunohistochemistry and pharm...

متن کامل

CRLX101 (formerly IT-101)–A Novel Nanopharmaceutical of Camptothecin in Clinical Development

CRLX101 (formerly IT-101) is a first-in-class nanopharmaceutical, currently in Phase 2a development, which has been developed by covalently conjugating camptothecin (CPT) to a linear, cyclodextrin-polyethylene glycol (CD-PEG) co-polymer that self-assembles into nanoparticles. As a nanometer-scale drug carrier system, the cyclodextrin polymeric nanoparticle technology, referred to as "CDP", has ...

متن کامل

Correlating preclinical animal studies and human clinical trials of a multifunctional, polymeric nanoparticle.

Nanoparticles are currently being investigated in a number of human clinical trials. As information on how nanoparticles function in humans is difficult to obtain, animal studies that can be correlative to human behavior are needed to provide guidance for human clinical trials. Here, we report correlative studies on animals and humans for CRLX101, a 20- to 30-nm-diameter, multifunctional, polym...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 7  شماره 

صفحات  -

تاریخ انتشار 2016